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Abstract

In this article, the authors describe the use of piezoelectric sensors and actuators for the prediction of
milling tool stability lobes, since existing methods for predicting tool stability have disadvantages which
limit their practical use. An experimental approach is described whereby modal testing is performed using
surface-mounted piezoelectric sensors and actuators to generate a prediction of tool instability due to
regenerative chatter. The approach is first demonstrated by synthetic modal analysis based upon a finite
element model of a cantilever beam. Laboratory tests are then performed on small milling tools, and it is
shown that there is good agreement with alternative methods for predicting stability. It is concluded that
the proposed technique may be more readily suited to automation, and is more appropriate for use on very
small milling tools.
r 2004 Elsevier Ltd. All rights reserved.
1. Introduction

High-speed machining is a potentially unstable system, where the forces generated by the
cutting process are coupled to the dynamic behaviour (stiffness, damping, and inertia) of the
see front matter r 2004 Elsevier Ltd. All rights reserved.
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Nomenclature

b depth of cut
bb breadth of a beam
blim depth of cut at the limit of stability
bp breadth of a piezoelectric transducer
Cp capacitance of a piezoelectric trans-

ducer
D3 electric displacement of a piezoelec-

tric transducer
d31 piezoelectric constant
E0,12 static correction for a modal model,

a12; based upon truncated modes
E3 electric field
F cutting force
ft actuation force the tip of the tool
GOTF orientated transfer function,

Y ðoÞ=F ðoÞ
h chip thickness
H12 receptance frequency response func-

tion, measured at location 1 due to
actuation at 2

hm mean chip thickness
ka piezoelectric actuator gain
Ks cutting stiffness
ks piezoelectric sensor gain
m number of teeth on the milling tool
Ma bending moment induced by a piezo-

electric actuator
M number of modes in the truncated

modal model
N number of complete surface waves

between subsequent tooth passes
n mode number (mode of vibration)

nA12 modal constant for mode n and
measurement H12

Nct number of cutting teeth
S1 strain
t time
tb thickness of a beam
T1 stress
tb beam thickness
tp piezoelectric transducer thickness
va piezoelectric actuator voltage
vs piezoelectric sensor voltage
xt tool displacement at the tip
x coordinate along the neutral axis of a

beam
Y tool vibration
y coordinate normal to the neutral axis

of a beam
Y0 tool vibration for the previous tool

pass
Yp young’s modulus
att frequency response prediction based

upon a modal model with a static
correction term

aP
tt frequency response prediction based

upon a modal model with no static
correction term

a angle between Y and F

� phase between surface waves on
workpiece

�33 permittivity of piezoelectric material
f1n mode shape for mode n at location 1
o vibration frequency
O rotation frequency of the spindle
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machine structure, tool, and workpiece. A common form of instability during machining, known
as regenerative chatter, is due to the generation of surface waviness which modulates the cutting
force. In the case of single-point orthogonal cutting operations (eg turning), this process was
modelled by Tlusty [1] over 40 years ago. In the case of milling operations, the same theory can be
used to indicate approximate stability conditions, and the technology is now available
commercially for machine-shop use [2].
In many cases, the workpiece is essentially rigid in comparison with the tool, and so the

prediction of chatter requires a measurement of the driving-point frequency response function
(FRF) of the tool at the cutting surface. This measurement is currently made with a modal
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hammer and collocated accelerometer, while the tool is mounted on the spindle. Whilst this
approach yields good predictions of chatter stability, there are a number of potential problems.
For example, the modal test requires a skilled (or trained at the very least) user in order to
perform the test, validate the data, and interpret the stability prediction. The test process itself
requires periods of machine down time, which may interfere with the production schedule, and
repeatability of the test data is not guaranteed between machine set-ups. Finally, frequency
response generation with a modal hammer is not effective on very small tools, where it becomes
impossible to accurately strike the tool tip.
In an effort to resolve these issues, some alternative approaches to the chatter prediction

problem have been proposed. For example, researchers have suggested a receptance coupling
method to enable tool testing to be performed off the machine [3]. However, repeatability
issues cannot be addressed, and an expert user is again required. Another approach is to predict
the tool FRF using finite element software [4], but errors in the model’s damping and stiffness
matrix lead to inaccurate predictions, so the approach is really only useful for tool specification.
To avoid the requirement for a tool FRF measurement, audio-processing techniques have been
developed to identify stable spindle speeds from a sound measurement during cutting [5,6].
However, stable depths of cut cannot be predicted, and skilled users are required. Recently, a
stable speed test apparatus has been proposed [7], but again this is unable to predict stable depths
of cut.
One potentially attractive approach to obtaining the tool tip frequency response data is to

excite the tool with a surface-bonded piezoelectric actuator. Compared to a modal hammer, this
approach offers more control over the excitation signal, thus reducing the effects of signal noise.
The approach is more amenable to automation which avoids user error, reduces tool downtime,
and enables more regular testing to reduce repeatability problems. Finally, the method is more
suitable for miniature tools. However, a disadvantage is that the tool tip FRF cannot be measured
directly and so some modal analysis or signal-processing steps are required. The piezoelectric
material must also be mounted onto the tool structure, and the electrical connections made. These
can be rather delicate operations, but in the future it may be possible to manufacture tools with
embedded piezoelectric transducers.
In this work, the authors describe an experimental procedure that has been used to predict

tool stability using piezoelectric transducers. In Section 2, the background theory is drawn
together to demonstrate how tool stability could be predicted from the experimental data. In
Section 3 a numerical study is described which demonstrates the concept, and in Section 4 a
milling tool is tested in the laboratory. Following a discussion of the results, some conclusions are
drawn on the performance of the proposed technique and its advantages compared to alternative
methods.
2. A review of the theory

The theory of regenerative chatter is not necessarily well known within the field of vibration
research, and so this section begins with a derivation for the stability condition for turning
operations. This is followed by a brief discussion of the issues that arise during milling. For a
more detailed discussion, the interested reader is referred to ref. [8,9].
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2.1. Stability lobes

2.1.1. Turning
In Fig. 1, a cutting tooth is removing a chip of material from the workpiece, which is moving

toward the tool. The depth of cutting is b, and the chip thickness is h. The workpiece is assumed to
be rigid, whilst the tool is flexible with a single mode of vibration normal to the cut surface as
indicated. As usual, it is assumed [10] that the force F on the tool due to the cutting operation is
related to the chip geometry by

F ¼ Ksbh; ð1Þ

where Ks is known as the cutting stiffness that relates the depth of cut to the resulting force.
After one rotation of the workpiece, the tool cuts into the surface produced by the cutter at the

previous rotation, or ‘pass’. The chip thickness is therefore given by

h ¼ hm þ Y 0 � Y : ð2Þ
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Fig. 1. Regenerative chatter in turning, for a single mode of vibration with stiffness k, damping c, and mass M. (a)

Turning operation; (b) chatter mechanism for a single degree-of-freedom tool.
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Fig. 2. Block diagram of the regenerative chatter mechanism. (a) Physical process; (b) rearranged as a negative

feedback process.
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With reference to Eq. (2) and Fig. 1b, hm is the mean chip thickness due to the tool moving into
the workpiece during the cutting operation. Y is the current vibration of the tool from its mean
position, and Y0 is the vibration from the mean position for the previous pass.
The cutting operation can therefore be described with the block diagram shown in Fig. 2a.

Here, the orientated transfer function, GOTF, between the cutting force F and the resulting
vibration Y is given by

GOTFðwÞ ¼ F cosðaÞGðwÞ; ð3Þ

where GðoÞ is the transfer function, or FRF, from a force applied in the direction of the mode of
vibration and the resulting motion in that direction. The angle a is depicted in Fig. 1b. With
reference to Fig. 2a, it is worth noting that the mechanism of regenerative chatter is based upon
the inherent feedback of vibration (i.e. self-excited vibration due to the cutting stiffness), and not
the changing frictional forces that arise during metal cutting, which are attributed to other less
significant forms of chatter [11].
For a linear system, the vibrations Y and Y0 will be sinusoidal with the same frequency but

delayed by a phase �: Redrawing the block diagram shown in Fig. 2a as a negative feedback
process gives the block diagram shown in Fig. 2b. For stability analysis of a linear system, the
constant value hm can be neglected, and the Nyquist stability criterion can be applied to Fig. 2b,
giving

KsblimGOTF joð Þ 1� e�j�
� �

¼ �1; ð4Þ

where blim is the value of b at the point of stability. The vectors can be represented on the Nyquist
plot, as shown in Fig. 3. Note that e�j� is a unit vector, and Ks; and blim are real. This gives

blim ¼
�1

2KsRe GOTF joð Þð Þ
; ð5Þ
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Fig. 4. Regenerative chatter in turning: surface waves. (a) 10.6 waves between tooth passes: N ¼ 6; � ¼ 0:6� 2� p; (b)
12 waves between tooth passes: N ¼ 12; � ¼ 0� 2� p:

GOTF GOTF e-jε

GOTF(1-e-jε) = -2 Re (GOTF)=1/(Ks blim)
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Imaginary

ε/2

Fig. 3. Nyquist diagram for GOTF(o), with Eq. (4) superimposed.
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which defines the limiting depth of cut, blim; for stable cutting at a given vibration frequency o:
The vibration frequency is related to the workpiece rotation speed O (in rad/s) by the formula

O ¼ o=ðN þ �=2pÞ; N ¼ 0; 1; 2; 3; . . . ; ð6Þ

where N is the largest possible integer such that �o2p: Eq. (6) defines the number of waves of
vibration (N þ �=2p) between consecutive passes of the tool, as illustrated in Fig. 4.
To summarise, the FRF for the tool, GðoÞ; can be scaled to give the so-called orientated

transfer function GOTFðoÞ: Each frequency o of the transfer function GOTFðoÞ has a limiting
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Fig. 5. Stability lobes diagram for a single degree-of-freedom structure.
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depth of cut given by Eq. (5), a phase � defined by Fig. 3, and a series of corresponding spindle
speeds—one for each value of N—given by Eq. (6).
This results in the stability lobe diagram, which illustrates the relationship between stable depth

of cut and spindle speed. For a single mode of vibration, a typical stability lobe is shown in Fig. 5.
The stability lobe diagram has enormous significance in practice: if the transfer function of the

tool tip is known, then the cutting stability can be predicted for a range of spindle speeds.

2.1.2. Milling
The analysis of milling chatter is made considerably more complex, since the cutting tool is

rotating rather than the workpiece, there is more than one cutting tool, and the cutting teeth are
usually not straight (due to the flute helix of the tool), so that cutting is not orthogonal. The
direction and magnitude of the cutting force will change as teeth engage and rotate in the
workpiece. Consequently, many researchers have proposed time-domain solutions to predict
chatter during milling [9,12], which usually rely on a modal model of the tool’s dynamic behaviour
at the cutting location (i.e. the tip of the tool). Alternatively, approximate solutions have been
proposed which extend the analytical result to the case of milling. Two popular methods are that
proposed by Altintas [13], and that used in the commercial software MetalMax TXF [14]. Here we
use the approach described by Smith and Tlusty [10], which is also consistent with Ref. [14]. The
cutting process is now shown schematically in Fig. 6, from which Eq. (6) can be rewritten as

N þ �=2p ¼ o=ðOmÞ; ð7Þ

where O is now the speed of rotation of the milling tool (in rad/s), and m is the number of teeth on
the cutter. If one assumes that the cutting force F acts in the middle of the cutting sector, and is
scaled by the average number of cutting teeth, then Eq. (5) can be rewritten as

blim ¼
�1

Nct2KsRe GOTF joð Þð Þ
; ð8Þ

where Nct is the average number of cutting teeth, which is determined from the radial immersion
of the tool into the workpiece, and the tool diameter.
In practice, the tool and spindle will have modes of vibration in mutually perpendicular

directions, and all these modes will contribute to the orientated transfer function. The FRFs in the
two directions are usually measured using a modal hammer and co-located accelerometer, and the
frequency response integrated twice to give the receptance FRF.
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Fig. 6. Regenerative chatter mechanism in milling. In the case shown, there are eight teeth on the cutter (m=8) and

approximately 1.6 surface waves between each tooth pass ðN ¼ 1; � ¼ 0:6� 2� pÞ:
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For the approximate analytical solution summarised here, the FRFs are scaled (depending
upon the cutting geometry) and summed to give the orientated transfer function (GOTF). Only the
negative real part of GOTF will dictate stability.
For time-domain simulations of milling operations, the FRFs of the tool tip are usually used to

create a modal models of the tool’s vibration behaviour at the cutting location. These models will
then be used within the time-domain simulation.
2.2. Modal analysis of piezostructures

To recap, the analysis of regenerative chatter during milling requires a knowledge of the
driving-point (i.e. collocated) receptance FRFs at the tool tip. These measurements are currently
obtained using a modal hammer and accelerometer, but this is not always practicable. The focus
of the present contribution is to develop an alternative method of predicting these FRFs using
piezo-actuators and sensors, and to illustrate the accuracy in terms of the stability lobe prediction.
In this section, the relevant theory is drawn together to describe the approach.
2.2.1. Problem definition
Consider the milling spindle system shown schematically in Fig. 7a. The aim is to identify

experimentally the FRF between the applied force Ft and the resulting deflection xt—a task that is
traditionally achieved using a modal hammer and accelerometer.
Fig. 7b illustrates the tool holder and tool in more detail. Two patches of piezoelectric material

have been added near the root of the tool, one being excited by a voltage va(t) and the other acting
as a sensor and producing a voltage vs(t). The task is to reconstruct the FRF at the tool tip:
xtðoÞ=f tðoÞ (referred to as GðoÞ in the preceding section), given the FRFs vsðoÞ=vaðoÞ and
xtðoÞ=vaðoÞ: Actuation at the tool tip is no longer necessary, and although the measurement xt is
still required, this can be achieved with a non-contacting sensor such as a laser doppler
vibrometer.
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Fig. 7. Milling tool and spindle schematic. (a) General arrangement; (b) close-up of the tool with a surface-mounted

piezoelectric sensor and actuator.
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2.2.2. Piezostructures

The constitutive laws for a piezoelectric material can be written as a coupled electromechanical
problem in a form similar to thermoelastic problems [15,16]. Dosch et al. [17] noted that the
general constitutive equations are underdetermined, but that the following scalar case is often
valid:

S1 ¼
1

Y P

T1 þ d31E3;

D3 ¼ d31T1 þ �33E3;
ð9Þ

where S1 is the scalar strain, YP is Young’s modulus for the piezoelectric material, T1 is the scalar
stress, d31 is a material constant, E3 is the electric field, D3 the electric displacement, and e33 the
permittivity of the piezoelectric material.
The modes of vibration that cause chatter are essentially the bending modes of the tool and

spindle structure. The region of the tool where the piezoelectric material is mounted can therefore
be treated as a beam structure such as that shown in Fig. 8, although in practice the beam cross-
section is cylindrical rather than rectangular. Ignoring the electromechanical coupling of the
piezoelectric material, the measured voltage as a function of time, vs(t), can be written as [17]

vs tð Þ ¼ ks y0 t; x2ð Þ � y0 t; x1ð Þð Þ;

ks ¼
Y pd31bp tb þ tp=2

� �
Cp

;
ð10Þ
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where x1 is the position of the start of the piezoelectric material along the axis of the beam, and x2
the end. The coordinate y is the deflection of the beam, bp is the breadth of the piezoelectric
material, tp its thickness, and tb the beam thickness. Cp is the capacitance of the piezoelectric
device, and ks is the sensor gain.
For a non-sensing actuator on the same beam structure, the actuator produces a bending

moment Ma as a function of time t and position x on the beam, which (again ignoring
electromechanical coupling) can be written as [17]

Ma t; xð Þ ¼ kava tð Þ h x � x1ð Þ � h x � x2ð Þ½ 	;

ka ¼ bbd31Y p tp þ tb

� �
;

ð11Þ

where ka is the actuator gain, va is the actuator voltage and h(x) is the Heaviside step function.
A detailed investigation of piezoelectric actuators was described by Crawley and de Luis [15]. It

was shown that surface-bonded actuators with perfect bonds apply concentrated moments at their
edges, as shown in Eq. (11), whilst for imperfect bonds the shear transfer from actuator to host
material results in a distributed moment.
In the foregoing analysis, the electromechanical coupling of the piezoelectric material has been

ignored. In practice, the coupling can have the effect of changing the stiffness of the structure
[18,19]. For example, Preumont [19] describes the finite element formulation of a shell structure
with surface-mounted piezoelectric material [20]. It was shown that in the ‘open circuit’ condition,
the usual mass and stiffness matrices are modified to become

Mxx €x þ Kxx � KxjK�1
jjKjx

� �
x ¼ f ; ð12aÞ

whereas when the piezoelectric material is driven by a voltage, the system equations are

Mxx €x þ Kxxx ¼ f � Kxjj; ð12bÞ

where f is the applied mechanical load, Mxx is the mass matrix, Kxx the stiffness matrix, Kjj the
electrical capacitance, and x the resulting displacements. Kxj and Kjx are coupling matrices
between the mechanical and electrical loads, and vice versa. Even without a detailed analysis of
this result it is apparent that, depending upon the electrical connection of the piezoelectric
material, the electromechanical coupling can modify the effective stiffness of the system.
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2.2.3. Modal analysis

In the case of non-piezostructures, the modal analysis approach is well known and a summary
is given here based upon the methods used in Ref. [21]. Given the experimental receptance
frequency response data for a continuous system from an excitation at actuator location 2 to a
response at sensor location 1, H12ðoÞ; and assuming that each mode has proportional viscous
damping, the response can be written as [22]

H12 oð Þ ¼
X1
n¼1

f1nf2n
o2n þ 2joBnon � o2

; ð13Þ

where f1n is the mode shape for the nth mode of vibration at the sensor location, and f2n is the
mode shape for the nth mode of vibration at the actuator location. A modal model based upon the
first M modes of vibration is

a12ðoÞ ¼
XM

n¼1

nA12

o2n þ 2joBnon � o2
þ E0;12; ð14Þ

where E0;12 represents the contributions of the truncated nodes as a static correction. The modal
constants (nA12), natural frequencies ðonÞ; and damping ratios ðznÞ can be identified using a
number of methods such as the peak-picking method, the circle fit method, or nonlinear least-
squares algorithms [23]. The modal constant nA12 is related to the mode shapes by

nA12 ¼ f1nf2n; ð15Þ

Modal analysis methods have been applied to piezostructures by a number of researchers, but
in general the aim has been to predict mode shapes and natural frequencies rather than to predict
a properly scaled frequency response function. For example, Cole et al. [24] considered
piezoelectric sensors, actuators, and sensoriactuators as coupled electromechanical devices, and
showed that the modal model can include mode shapes for the sensors and actuators. Hagood et
al. [25] and Kanawa [26] also investigated piezostructure dynamics, although their analysis was
from a control perspective.
Wang [27,28] and co-workers assumed constant actuator and sensor gains, similar to those used

by Dosch [17], and showed that the analytical mode shapes for beams with surface-mounted
actuators or sensors can be rewritten as the difference between the mode shape slopes at the two
edges of the transducer:

fpn ¼ f0
n x2ð Þ � f0

n x1ð Þ; ð16Þ

where the subscript p denotes the piezoelectric material location, and n is the mode of vibration.
The coordinates x1 and x2 are as for Eqs. (10) and (11), and f is the derivative of the deflection
mode shape with respect to x. More recently, this theoretical work has been applied to laboratory
vibration problems [29]. The relevance of Eq. (16) to the present study is that it demonstrates that
the FRFs for piezoelectric sensors and actuators can still be represented by modal models, and
that a piezoelectric sensor will have the same mode shape as a piezoelectric actuator in the same
location.
Returning to Eq. (14) and Fig. 7b, the nth mode shape at the piezoelectric sensor/actuator

is defined as fpn; and the nth mode shape at the tip of the tool is defined as ftn: The modal model
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is now:

app oð Þ ¼
1

kaks

vs oð Þ

va oð Þ
¼

XM

n¼1

nApp

o2n þ 2joBnon � o2
þ E0;pp ð17Þ

atp oð Þ ¼
1

ka

x oð Þ

va oð Þ
¼

XM

n¼1

nAtp

o2n þ 2joBnon � o2
þ E0;tp ð18Þ

where the modal constants nApp and nAtp can be identified. This leads to the mode shapes of the
co-located piezoelectric sensor and actuator:

fpn ¼
ffiffiffiffiffiffiffiffiffi
nApp

p
; ð19Þ

which can be used to find the mode shape at the tip of the tool:

ftn ¼
nAtp

fpn

; ð20Þ

from which the response at the tip of the tool can be predicted:

att oð Þ ¼
xt oð Þ

Ft oð Þ
¼

XM

n¼1

ftnftn

o2n þ 2joBnon � o2
þ E0;tt; ð21Þ

which is equivalent to the term GðoÞ using in the preceding analysis of chatter stability. However,
the residual term, E0,tt, is unknown and so the predicted response can only include the modes that
were included in the modal model. This prediction is denoted by the superscript P, giving

aP
tt oð Þ ¼

XM

n¼1

ftnftn

o2n þ 2joBnon � o2
�

xt oð Þ

Ft oð Þ
: ð22Þ

Near the resonant frequencies the response is dominated by the corresponding mode of
vibration, so the residual E0,tt will be negligible and Eq. (22) will be accurate. Near the
antiresonances, the residual term will have a significant effect and so Eq. (22) will be less accurate.
Fortunately, from the point of view of stability lobes, we are often only interested in the real part
of the response when it is negative and of high magnitude, and so the antiresonances are not so
important.

2.2.4. Application

To summarise, there has been a great deal of research that has attempted to characterise the
performance of surface-mounted piezoelectric sensors and actuators. The majority of this work
has assumed that the host structure is a beam or shell. In the case of a milling tool, regenerative
chatter is usually a result of the bending modes of the tool/spindle structure, and so these
assumptions remain valid. Piezoelectric materials exhibit electromechanical coupling which (as
with many previous studies) has been neglected here, although in practice this coupling can act to
modify the stiffness of the structure.
One potential pitfall with the use of surface-bonded piezoelectric devices is the accuracy of the

sensor and actuator gains (Eqs. (10) and (11)). For some modal testing scenarios using
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piezoelectric devices, the practitioner may only be interested in determining the natural
frequencies and unscaled mode shapes, in which case the transducer gains are not important.
However, from the point of view of stability lobe prediction, the desired FRF will be scaled by
both of the transducer gains. Errors in the gains could be caused by a number of factors, such as:
day to day changes in the piezoelectric capacitance, inaccuracy of the piezo/host geometry, and
the validity of the assumptions behind Eqs. (10) and (11). The latter two examples are more likely
to occur on tools where the flat piezo-transducer will be bonded to a cylindrical surface, resulting
in thick, irregular glue lines. Furthermore, it has been shown by considering the electrical
equivalent circuit of the electromechanically coupled piezostructure [26] that the sensor/actuator
gain is a function of the sensor/actuator placement. It is therefore desirable to develop a practical
method for calibrating the transducer gains.
In the case where the piezoelectric sensor and actuator gains, ks and ka, are subject to error

factors, the prediction of att
P will be scaled accordingly. With reference to Eq. (21), it is well known

[23] that the static stiffness at location t due to a load at location t should match the prediction att

at zero frequency. Assuming the residual term (E0,tt) is negligible, the prediction aP
tt can be scaled

by a factor K so that its zero-frequency value matches the static deflection of the structure. This
will correct for the calibration errors of the sensor and actuator.
3. Numerical study

Section 2 has demonstrated that the prediction of tool stability lobes using piezo transducers
draws on theory from three main areas: machine dynamics, modal analysis, and smart structures.
An alternative approach has been proposed for predicting the required FRF based upon a modal
model. In addition, a static calibration procedure has been described to account for variations in
the sensor and actuator gains.
To begin, these concepts were explored numerically using a finite element model of a cantilever

beam—so-called ‘synthetic modal analysis’. It should be noted that this structure is not intended
to resemble a milling tool, but to assess the modal model and static correction approach on a
simple structure. The model geometry is summarised in Table 1, and the piezoelectric actuation
was modelled as two discrete bending moments (of opposite sign) corresponding to the edges of
the piezoelectric actuator. The piezoelectric sensor was modelled as the 2 rotational degrees of
freedom at the same locations, and scaling errors were then introduced into the sensor and
Table 1

Geometry of the FE model

Material properties As steel

Beam thickness, tb (mm) 3

Beam width, bb (mm) 19

Distance of piezoelectric material from built-in end (mm) 30

Length of piezoelectric material (mm) 19

Length of beam (mm) 130
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Fig. 9. Numerical results from an FE model of a cantilever beam. (a) Comparison between driving-point FRF and the

FRF predicted from the response to piezoelectric actuation. (b) Comparison between the true response of the

piezoelectric sensor to direct excitation at the tip, and the sensor response predicted from the beam’s behaviour during

piezoelectric actuation.
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actuator responses. A modal model was generated based upon this data, and the model used to
predict the response at the tip of the beam. This predicted response was then scaled so that its dc
value matched the static deflection stiffness at the top of the beam.
The driving-point frequency response at the free end of the beam was determined and compared

to the predicted result.
In Fig. 9, the modal model prediction is compared to the FE model response for the driving-

point FRF at the tip of the beam. It can be seen that, after recalibrating the response by matching
the static deflection to that from the FE model, the predicted driving-point FRF at the tip is
virtually identical to the actual driving-point FRF at the tip. For the predicted response at the
piezoelectric sensor, there is some difference, particularly in the antiresonance frequency. This is
due to the absence of a residual term for the truncated modes, this term having a much larger
effect for the piezoelectric mode shape than for the tip mode shape.
It has therefore been shown that the proposed method is valid either near the modelled natural

frequencies, or when the unknown static correction term, E0,tt, is small.
4. Experimental study

A milling tool was then tested in the laboratory. The tool was rigidly clamped using a lathe
chuck fastened to a rigid foundation, and piezoelectric surface patches added near the root of the
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Table 2

Geometry and properties of the milling tools with surface-mounted piezoelectric material

Type Carbide end mill

Diameter (‘‘) 0.375

Free length (‘‘) 2.25

tp (mm) 0.191

bp (mm) 10

Distance or piezoelectric material from root of tool (mm) 4

Piezoelectric material length (mm) 8

No. flutes 2

Manufacturer Robb Jack Corporation

Adhesive Loctite E-00NS

Piezoelectric material Piezo Systems PSI-5A4E
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tool using an epoxy adhesive. The geometry of the tool is described in Table 2. The tool was
excited using a chirp voltage passing through a voltage amplifier to the piezoelectric actuator.
The deflection at the tool tip was measured using an accelerometer, and the piezoelectric sensor

voltage was measured directly. SigLab signal-processing hardware was used to estimate the
corresponding frequency response functions, and these were then processed using the Matlab
Structural Dynamics Toolbox, to predict the FRF at the tip of the tool, aP

tt:
A dead-weight test was then performed by hanging a small weight off the end of the tool and

measuring the resulting deflection with a capacitance probe. The resulting value of static stiffness
was used to created the calibrated response prediction, KaP

tt:
For comparison purposes, a small modal hammer was used to excite the tool tip at the same

location as the accelerometer, and the driving-point FRF, Htt, estimated.
The analytical stability lobes were then generated by assuming that the orientated transfer

function, GOTF, is equal to the measured (Htt) or predicted ðKaP
ttÞ frequency response function.

For comparison purposes this assumption makes no difference, although in practice it is
equivalent to a slot milling operation using a tool with equal FRFs in the directions normal and
parallel to the workpiece feed direction.
The tool tested was observed to have two bending modes occurring below 5 kHz, along with a

mode at around 2.6 kHz. Modal models were created with just the two main bending modes, and
all three modes. Fig. 10 shows the real-FRF predictions in the region of each natural frequency.
There are small differences in the natural frequency and magnitude when compared to the actual
response. However, Fig. 11 shows that these errors have little effect on the stability lobes for the
tool: there is excellent agreement between the predicted lobes and those obtained with the modal
hammer. Including the mode at 2.6 kHz (Fig. 10b) enables the most accurate prediction of the
stability lobe.
Fig. 12 attempts to investigate the effect of the piezoelectric transducers on the stability lobes

for this tool, by testing the tool (with a modal hammer) before and after the addition of the
transducer patches. The lobes remain largely unaffected by the addition of the patches, but since
the tool was removed from its holder between the two tests, the repeatability of this result is
questionable and further work is required to properly assess the influence of small piezoelectric
patches on the stability lobe plot.
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Fig. 10. Tool TIP FRFs (displacement/force) obtained (1) by direct impact with a modal hammer and (2) predicted

from the response of the tool to piezoelectric actuation. (a) Mode 1; (b) mode 2; (c) mode 3.
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5. Discussion

The results described in the previous section have demonstrated the validity of the proposed
method. However, a number of points are worthy of further discussion:
First, the configuration of the piezoelectric patches (as shown in Fig. 8) means that the

piezoelectric actuator and sensor are not truly collocated, which could lead to errors in the modal
analysis. If further work demonstrated that these errors were significant, sensoriactuators
[17,30,31] could be used to ensure collocality. However, this approach may be more sensitive to
electrical interference, and would need additional hardware.
A second issue arising from the configuration of the piezoelectric patches is that extension and

torsion modes of vibration may be excited, as well as bending modes. Extension modes would not be
excited if a pair of actuators were used, placed on opposite sides of the structure, and working in
opposing directions. This would induce pure bending but would require a sensoriactuator
configuration to enable a collocated measurement. Torsion modes would be excited if the patches
are not square and parallel when bonded to the surface. However, it may be that these modes
(extensional and torsional) are also capable of producing chatter. In this case, the ability to excite these
modes would be a distinct advantage compared to the traditional approach using a modal hammer.
A further consideration is that the piezoelectric transducers must be sufficiently small to

properly excite or measure the mode of vibration.
The use of a static calibration to scale the FRF predictions could cause problems since this

measurement becomes more difficult on small tools and may be difficult to implement within a
machine structure. However, it is possible that the calibration process could be carried out before
testing in the machine.
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Fig. 11. Stability lobes for the tool obtained (1) by direct impact using a modal hammer at the tool tip and (2) predicted

from the response of the tool to piezoelectric actuation.
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It should be noted that the tools tested in this study were rigidly clamped, and further work is
needed to test tools that are held on a milling machine spindle. However, the modal models
generated from a rigidly clamped tool could be combined with data from a machine spindle using
a substructure analysis technique [3]. Alternatively, a slip ring assembly or telemetry system could
be used so that the electrical connections shown in Fig. 7a and b can be achieved during operation
of the machine.
A final issue that is worth mentioning is the validity of the test data from the modal hammer. As

mentioned in Section 1, this method requires an experienced user and is itself dependent upon
accurate calibration of the force sensor across the frequency range. Consequently, it can be argued
that the differences seen in the results presented here are actually due to errors in measurements
with the modal hammer, rather than errors in the predictions with piezoelectric devices.
6. Conclusions

A new modal test procedure has been described for the prediction of milling tool stability lobes,
using surface-mounted piezoelectric transducers. The approach relies on the assumption that the
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Fig. 12. Stability lobes using modal hammer FRFs before and after the piezoelectric transducers were glued on.
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static correction (introduced by a truncaton of the modal model) is negligible. This assumption
has been shown to be valid for both numerical studies based upon cantilever beams, and on
milling tools tested in the laboratory.
The experimental tests have demonstrated good agreement with traditional stability test

procedures which rely on a modal hammer, and the new method is particularly well suited to use
on small milling tools which can be difficult to test with a modal hammer. It is suggested that the
proposed technique could be used for automated chatter testing using intelligent tools with
embedded piezoelectric transducers.
Finally, the proposed technique may prove useful to other applications of vibration testing

where a frequency response function is to be predicted at a sensor location, when the system is
excited by surface-mounted piezoelectric actuators.
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